Paléontologie Moleculaire, PCR, mRNA, cDNA, miRNA, Total RNA
Identification of Avramr1 from Phytophthorainfestans utilizing lengthy learn
JuanJune 13, 20210 Comments
Identification of Avramr1 from Phytophthorainfestans using prolonged study and cDNA pathogen-enrichment sequencing (PenSeq)
Potato late blight, introduced on by the oomycete pathogen Phytophthorainfestans, significantly hampers potato manufacturing. Currently, a model new Resistance to Phytophthorainfestans (Rpi) gene, Rpi-amr1, was cloned from a wild Solanum species, Solanumamericanum.
Identification of the corresponding acknowledged effector (Avirulence or Avr) genes from P. infestans is important to elucidating their naturally occurring sequence variation, which in flip informs the potential sturdiness of the cognate late blight resistance. To determine the P. infestans effector acknowledged by Rpi-amr1, we screened obtainable RXLR effector libraries and used prolonged study and cDNA pathogen-enrichment sequencing (PenSeq) on Four P. infestans isolates to find the untested effectors.
Using single-molecule real-time sequencing (SMRT) and cDNA PenSeq, we acknowledged 47 extraordinarily expressed effectors from P. infestans, along with PITG_07569, which triggers a extraordinarily specific cell lack of life response when transiently coexpressed with Rpi-amr1 in Nicotianabenthamiana, suggesting that PITG_07569 is Avramr1. Proper right here we show that prolonged study and cDNA PenSeq permits the identification of full-length RXLR effector households and their expression profile. This look at has revealed key insights into the evolution and polymorphism of a elaborate RXLR effector family that is associated to the recognition by Rpi-amr1.
Description: A DNA sequence encoding the mature variant of ov-VEGF-E isolate D1701 (Dehio et al., 1999; GenBank accession No. AF106020) was expressed in E. coli as a 132 amino acid residue fusion protein with an N-terminal His-tag sequence and a thrombin cleavage site. Recombinant VEGF-E homodimer was dimerized in vitro and has a predicted mass of approximately 35 kDa. Based on sequence similarity to VEGF-A, a gene encoding a VEGF homologue has recently been discovered in the genome of Orf virus (OV) (Lyttle et al., 1994). Different isolates of Orf virus show significant amino acid sequence similarity to VEGF-A and described as a viral virulence factor that appears to be derived from captured host genes. All eight Cysteine residues of the central Cysteine knot motif characteristic of members of the VEGF family are conserved among other residues in the VEGF-E proteins (Dehio et al., 1999; Wise et al., 1999). Alignment of all mammalian VEGF sequences indicated that VEGF-E is distinct from the previously described VEGFs but most closely related to VEGF-A. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation, whilst in contrast to VEGF-A, VEGF-E cannot bind to VEGF receptor-1 (Flt-1). Furthermore VEGF-E can also not bind to VEGF receptor-3 (FLT-4). Therefore VEGF-E is a potent angiogenic factor selectively binding to VEGF receptor –2/KDR.
Description: A DNA sequence encoding the mature variant of ovVEGF-E isolate D1701 (Dehio et al., 1999; GenBank accession No. AF106020) was expressed in E. coli as a 132 amino acid residue fusion protein with an N-terminal His-tag sequence and a thrombin cleavage site. Recombinant VEGF-E homodimer was dimerized in vitro and has a predicted mass of approximately 35 kDa. Based on sequence similarity to VEGF-A, a gene encoding a VEGF homologue has recently been discovered in the genome of Orf virus (OV) (Lyttle et al., 1994). Different isolates of Orf virus show significant amino acid sequence similarity to VEGF-A and described as a viral virulence factor that appears to be derived from captured host genes. All eight cysteine residues of the central cysteine knot motif characteristic of members of the VEGF family are conserved among other residues in the VEGF-E proteins (Dehio et al., 1999; Wise et al., 1999). Alignment of all mammalian VEGF sequences indicated that VEGF-E is distinct from the previously described VEGFs but most closely related to VEGF-A. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation, whilst in contrast to VEGF-A, VEGF-E can not bind to VEGF receptor-1 (Flt-1). Furthermore VEGF-E can also not bind to VEGF receptor-3 (FLT-4). Therefore VEGF-E is a potent angiogenic factor selectively binding to VEGF receptor –2/KDR.
Description: A DNA sequence encoding the mature variant of ovVEGF-E isolate D1701 (Dehio et al., 1999; GenBank accession No. AF106020) was expressed in E. coli as a 132 amino acid residue fusion protein with an N-terminal His-tag sequence and a thrombin cleavage site. Recombinant VEGF-E homodimer was dimerized in vitro and has a predicted mass of approximately 35 kDa. Based on sequence similarity to VEGF-A, a gene encoding a VEGF homologue has recently been discovered in the genome of Orf virus (OV) (Lyttle et al., 1994). Different isolates of Orf virus show significant amino acid sequence similarity to VEGF-A and described as a viral virulence factor that appears to be derived from captured host genes. All eight cysteine residues of the central cysteine knot motif characteristic of members of the VEGF family are conserved among other residues in the VEGF-E proteins (Dehio et al., 1999; Wise et al., 1999). Alignment of all mammalian VEGF sequences indicated that VEGF-E is distinct from the previously described VEGFs but most closely related to VEGF-A. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation, whilst in contrast to VEGF-A, VEGF-E can not bind to VEGF receptor-1 (Flt-1). Furthermore VEGF-E can also not bind to VEGF receptor-3 (FLT-4). Therefore VEGF-E is a potent angiogenic factor selectively binding to VEGF receptor –2/KDR.
Description: A DNA sequence encoding the mature variant of ov-VEGF-E isolate D1701 was expressed in E. coli as a 132 amino acid residue fusion protein with an N-terminal His-tag sequence and a thrombin cleavage site. Recombinant VEGF-E homodimer was dimerized in vitro and has a predicted mass of approximately 35 kDa. Based on sequence similarity to VEGF-A, a gene encoding a VEGF homologue has recently been discovered in the genome of Orf virus (OV). Different isolates of Orf virus show significant amino acid sequence similarity to VEGF-A and described as a viral virulence factor that appears to be derived from captured host genes. All eight Cysteine residues of the central Cysteine knot motif characteristic of members of the VEGF family are conserved among other residues in the VEGF-E proteins. Alignment of all mammalian VEGF sequences indicated that VEGF-E is distinct from the previously described VEGFs but most closely related to VEGF-A. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation, whilst in contrast to VEGF-A, VEGF-E cannot bind to VEGF receptor-1 (Flt-1). Furthermore VEGF-E can also not bind to VEGF receptor-3 (FLT-4). Therefore VEGF-E is a potent angiogenic factor selectively binding to VEGF receptor –2/KDR.
Recombinant Virus VEGF E (Orf Virus) Protein, His, E.coli-1mg
Description: A DNA sequence encoding the first 116 amino acid residue of Orf virus VEGF-E isolate D1701 (Dehio et al., 1999 EMBO J. 18:363-374; GenBank accession No. AF106020) was fused with a DNA sequence encoding to the C-terminal heparin binding domain of human VEGF165. The chimeric protein was expressed in insect cells using a baculovirus expression system. Based on sequence similarity to VEGF-A, a gene encoding a VEGF homologue has recently been discovered in the genome of Orf virus (OV) (Lyttle et al., 1994 J. Virol 68:84-92). Different isolates of orf virus show significant amino acid sequence similarity to VEGF-A and described as a viral virulence factor that appear to be derived from captured host genes. All eight cysteine residues of the central cysteine knot motif characteristic of members of the VEGF family are conserved among other residues in the VEGF-E proteins (Dehio et al., 1999 EMBO J. 18:363-374; Wise et al., 1999 Proc. Natl. Acad. Sci USA 96:3071-3076). Alignment of all mammalian VEGF sequences indicated that VEGF-E is distinct from the previously described VEGFs but most closely related to VEGF-A. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation, whilst in contrast to VEGF-A, VEGF-E and hb-VEGF-E can not bind to VEGF receptor-1 (Flt-1). Therefore VEGF-E is a potent angiogenic factor selectively binding to VEGF receptor–2/ KDR. Compared to human VEGF165 this virus form has no heparin-binding domain and seems to be a freely secreted protein comparable to VEGF121. In order to compare this form with human VEGF165, an additional heparin-binding domain was engineered at the C-terminus to allow interaction with proteo-aminoglycans and heparan sulfate. These form is also able to interact with neuropillin–1.
Orf virus VEGF-E, Heparin-binding Recombinant Protein
Description: A DNA sequence encoding the first 116 amino acid residue of Orf virus VEGF-E isolate D1701 (Dehio et al., 1999 EMBO J. 18:363-374; GenBank accession No. AF106020) was fused with a DNA sequence encoding to the C-terminal heparin binding domain of human VEGF165. The chimeric protein was expressed in insect cells using a baculovirus expression system. Based on sequence similarity to VEGF-A, a gene encoding a VEGF homologue has recently been discovered in the genome of Orf virus (OV) (Lyttle et al., 1994 J. Virol 68:84-92). Different isolates of orf virus show significant amino acid sequence similarity to VEGF-A and described as a viral virulence factor that appear to be derived from captured host genes. All eight cysteine residues of the central cysteine knot motif characteristic of members of the VEGF family are conserved among other residues in the VEGF-E proteins (Dehio et al., 1999 EMBO J. 18:363-374; Wise et al., 1999 Proc. Natl. Acad. Sci USA 96:3071-3076). Alignment of all mammalian VEGF sequences indicated that VEGF-E is distinct from the previously described VEGFs but most closely related to VEGF-A. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation, whilst in contrast to VEGF-A, VEGF-E and hb-VEGF-E can not bind to VEGF receptor-1 (Flt-1). Therefore VEGF-E is a potent angiogenic factor selectively binding to VEGF receptor–2/ KDR. Compared to human VEGF165 this virus form has no heparin-binding domain and seems to be a freely secreted protein comparable to VEGF121. In order to compare this form with human VEGF165, an additional heparin-binding domain was engineered at the C-terminus to allow interaction with proteo-aminoglycans and heparan sulfate. These form is also able to interact with neuropillin–1.
Description: A DNA sequence encoding the mature variant of ovVEGF-E isolate D1701 (Dehio et al., 1999; GenBank accession No. AF106020) was expressed in E. coli as a 132 amino acid residue fusion protein with an N-terminal His-tag sequence and a thrombin cleavage site. Recombinant VEGF-E homodimer was dimerized in vitro and has a predicted mass of approximately 35 kDa.
Equine uridine diphospho-glucuronosyltransferase 1A1, 2A1, 2B4, 2B31: cDNA cloning, expression and preliminary characterization of morphine metabolism
Objective: Uridine diphospho-glucuronosyltransferases (UGTs) are membrane-bound enzymes that catalyze the conjugation of glucuronic acid onto a numerous set of xenobiotics. Horses successfully and extensively glucuronidate a whole lot of xenobiotics, along with opioids, making UGTs an very important group of drug-metabolizing enzymes for the clearance of medicine.
Recombinant enzymes have allowed researchers to characterize the metabolism of a variety of medicine. The primary objective was to clone, particular and characterize equine UGTs using medicine characterised as UGT substrates in numerous species. A secondary objective was to characterize the in vitro metabolism of morphine in horses.
Study design: In vitro drug metabolism look at using liver microsomes and recombinant enzyme strategies.
Animals: Liver microsomes and RNA from tissue collected from two Thoroughbred mares euthanized for various causes.
Methods: Based totally on homology to the human UGT2B7, Four equine UGT variants have been expressed: UGT1A1, UGT2A1, UGT2B31 and UGT2B4. cDNA sequences have been cloned and ensuing protein expressed in a baculovirus expression system.
Efficiency of the enzymes was assessed using 4-methylumbelliferone, testosterone, diclofenac and ketoprofen. Recombinant enzyme, administration cells, equine liver microsomes and human UGT2B7 supersomes have been then incubated with morphine. Concentrations of metabolites have been measured using liquid chromatography-tandem mass spectrometry and enzyme kinetics determined.
Outcomes: 4-Methylumbelliferone was glucuronidated by all expressed equine UGTs. Testosterone glucuronide was not produced by any of the expressed enzymes, and diclofenac glucuronide and ketoprofen glucuronide have been produced by UG2A1 and UGT1A1, respectively. UGT2B31 metabolized morphine to morphine-3-glucuronide and low concentrations of morphine-6-glucuronide.
Conclusions and scientific relevance: That’s the major worthwhile expression of helpful recombinant equine UGTs. UGT2B31 contributes to the glucuronidation of morphine; nonetheless, it is most likely not the first metabolizing enzyme. These outcomes warrant extra investigation of equine UGTs, along with expression of additional enzymes and extra characterization of UGT2B31 as a contributor to morphine metabolism.
An progressive genosensor for the monitoring of Leishmaniaspp sequence using binding of pDNA to cDNA based totally on Cit-AgNPs
Leishmaniasis considered basically essentially the most important epidemic-prone diseases based mostly on the World Nicely being Group. Early diagnoses and treatment of Leishmania an an infection is an effective drawback since, it has no symptom and is resistance to medicine. Subsequently, there’s an urgent need for delicate and actual detection of this pathogen.
On this look at, a model new method was developed for optical biosensing of Leishmaniaspp sequence based totally on hybridization of Citrate capped Ag nanoparticles bonded to specific single stranded DNA probe of Leishmania spp. Aggregation of the Citrate capped Ag nanoparticles throughout the existence or lack of a cDNA sequence of Leishmania, set off eye catching and considerable very important alter throughout the UV-vis.
The obtained low prohibit of quantification (LLOQ) of was achieved as 1ZM. Based totally on experimental ends in optimum conditions, quick bioanalysis of Leishmaniaspp sequence was carried out (2 min). So, this probe could be utilized for the scientific evaluation of this pathogen and an an infection sickness.
Protein Stabilization and Supply: A Case Examine of Invasion Plasmid Antigen D Adsorbed on Porous Silica
Roughly half of all vaccines produced yearly are wasted as a result of effectivity relies on protein construction and warmth publicity disrupts the intermolecular interactions wanted to keep up the construction.
Thus, most vaccines require a temperature-controlled provide chain to attenuate waste. A extra sustainable know-how was developed through the adsorption of invasion plasmid antigen D (IpaD) onto mesoporous silica, enhancing the thermal stability of this protein-based therapeutic. Seven silicas have been characterised to find out the results of pore diameter, pore quantity, and floor space on protein adsorption.
The silica-IpaD advanced was then heated above the IpaD denaturing temperature and N,N-dimethyldodecylamine N-oxide was used to take away IpaD from the silica. Round dichroism confirmed that the adsorbed IpaD after the warmth therapy maintained a local secondary construction wealthy in α-helix content material. In distinction, the unprotected IpaD after warmth therapy misplaced its secondary construction. Isotherms utilizing Langmuir, Freundlich, and Temkin fashions demonstrated that the adsorption of IpaD onto silicas is finest match by the Langmuir mannequin. If pores are lower than 15 nm, adsorption is negligible.
If the pores are between 15 and 25 nm, then monolayer protection is achieved and IpaD is protected against thermal denaturing. If pores are bigger than 25 nm, the adsorption is a multilayer protection and it’s simpler to take away the protein from the silica due to a less-developed hydrogen bond community. This case examine supplies robust proof that IpaD is thermally stabilized through adsorption on mesoporous silica with the right vary of pore sizes.
Description: A DNA sequence encoding the mature variant of ov-VEGF-E isolate D1701 (Dehio et al., 1999; GenBank accession No. AF106020) was expressed in E. coli as a 132 amino acid residue fusion protein with an N-terminal His-tag sequence and a thrombin cleavage site. Recombinant VEGF-E homodimer was dimerized in vitro and has a predicted mass of approximately 35 kDa. Based on sequence similarity to VEGF-A, a gene encoding a VEGF homologue has recently been discovered in the genome of Orf virus (OV) (Lyttle et al., 1994). Different isolates of Orf virus show significant amino acid sequence similarity to VEGF-A and described as a viral virulence factor that appears to be derived from captured host genes. All eight Cysteine residues of the central Cysteine knot motif characteristic of members of the VEGF family are conserved among other residues in the VEGF-E proteins (Dehio et al., 1999; Wise et al., 1999). Alignment of all mammalian VEGF sequences indicated that VEGF-E is distinct from the previously described VEGFs but most closely related to VEGF-A. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation, whilst in contrast to VEGF-A, VEGF-E cannot bind to VEGF receptor-1 (Flt-1). Furthermore VEGF-E can also not bind to VEGF receptor-3 (FLT-4). Therefore VEGF-E is a potent angiogenic factor selectively binding to VEGF receptor –2/KDR.
Description: A DNA sequence encoding the mature variant of ovVEGF-E isolate D1701 (Dehio et al., 1999; GenBank accession No. AF106020) was expressed in E. coli as a 132 amino acid residue fusion protein with an N-terminal His-tag sequence and a thrombin cleavage site. Recombinant VEGF-E homodimer was dimerized in vitro and has a predicted mass of approximately 35 kDa. Based on sequence similarity to VEGF-A, a gene encoding a VEGF homologue has recently been discovered in the genome of Orf virus (OV) (Lyttle et al., 1994). Different isolates of Orf virus show significant amino acid sequence similarity to VEGF-A and described as a viral virulence factor that appears to be derived from captured host genes. All eight cysteine residues of the central cysteine knot motif characteristic of members of the VEGF family are conserved among other residues in the VEGF-E proteins (Dehio et al., 1999; Wise et al., 1999). Alignment of all mammalian VEGF sequences indicated that VEGF-E is distinct from the previously described VEGFs but most closely related to VEGF-A. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation, whilst in contrast to VEGF-A, VEGF-E can not bind to VEGF receptor-1 (Flt-1). Furthermore VEGF-E can also not bind to VEGF receptor-3 (FLT-4). Therefore VEGF-E is a potent angiogenic factor selectively binding to VEGF receptor –2/KDR.
Description: A DNA sequence encoding the mature variant of ovVEGF-E isolate D1701 (Dehio et al., 1999; GenBank accession No. AF106020) was expressed in E. coli as a 132 amino acid residue fusion protein with an N-terminal His-tag sequence and a thrombin cleavage site. Recombinant VEGF-E homodimer was dimerized in vitro and has a predicted mass of approximately 35 kDa. Based on sequence similarity to VEGF-A, a gene encoding a VEGF homologue has recently been discovered in the genome of Orf virus (OV) (Lyttle et al., 1994). Different isolates of Orf virus show significant amino acid sequence similarity to VEGF-A and described as a viral virulence factor that appears to be derived from captured host genes. All eight cysteine residues of the central cysteine knot motif characteristic of members of the VEGF family are conserved among other residues in the VEGF-E proteins (Dehio et al., 1999; Wise et al., 1999). Alignment of all mammalian VEGF sequences indicated that VEGF-E is distinct from the previously described VEGFs but most closely related to VEGF-A. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation, whilst in contrast to VEGF-A, VEGF-E can not bind to VEGF receptor-1 (Flt-1). Furthermore VEGF-E can also not bind to VEGF receptor-3 (FLT-4). Therefore VEGF-E is a potent angiogenic factor selectively binding to VEGF receptor –2/KDR.
Orf virus VEGF-E, Heparin-binding Recombinant Protein
Description: A DNA sequence encoding the first 116 amino acid residue of Orf virus VEGF-E isolate D1701 (Dehio et al., 1999 EMBO J. 18:363-374; GenBank accession No. AF106020) was fused with a DNA sequence encoding to the C-terminal heparin binding domain of human VEGF165. The chimeric protein was expressed in insect cells using a baculovirus expression system. Based on sequence similarity to VEGF-A, a gene encoding a VEGF homologue has recently been discovered in the genome of Orf virus (OV) (Lyttle et al., 1994 J. Virol 68:84-92). Different isolates of orf virus show significant amino acid sequence similarity to VEGF-A and described as a viral virulence factor that appear to be derived from captured host genes. All eight cysteine residues of the central cysteine knot motif characteristic of members of the VEGF family are conserved among other residues in the VEGF-E proteins (Dehio et al., 1999 EMBO J. 18:363-374; Wise et al., 1999 Proc. Natl. Acad. Sci USA 96:3071-3076). Alignment of all mammalian VEGF sequences indicated that VEGF-E is distinct from the previously described VEGFs but most closely related to VEGF-A. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation, whilst in contrast to VEGF-A, VEGF-E and hb-VEGF-E can not bind to VEGF receptor-1 (Flt-1). Therefore VEGF-E is a potent angiogenic factor selectively binding to VEGF receptor–2/ KDR. Compared to human VEGF165 this virus form has no heparin-binding domain and seems to be a freely secreted protein comparable to VEGF121. In order to compare this form with human VEGF165, an additional heparin-binding domain was engineered at the C-terminus to allow interaction with proteo-aminoglycans and heparan sulfate. These form is also able to interact with neuropillin–1.
Orf virus VEGF-E, Heparin-binding Recombinant Protein
Description: A DNA sequence encoding the first 116 amino acid residue of Orf virus VEGF-E isolate D1701 (Dehio et al., 1999 EMBO J. 18:363-374; GenBank accession No. AF106020) was fused with a DNA sequence encoding to the C-terminal heparin binding domain of human VEGF165. The chimeric protein was expressed in insect cells using a baculovirus expression system. Based on sequence similarity to VEGF-A, a gene encoding a VEGF homologue has recently been discovered in the genome of Orf virus (OV) (Lyttle et al., 1994 J. Virol 68:84-92). Different isolates of orf virus show significant amino acid sequence similarity to VEGF-A and described as a viral virulence factor that appear to be derived from captured host genes. All eight cysteine residues of the central cysteine knot motif characteristic of members of the VEGF family are conserved among other residues in the VEGF-E proteins (Dehio et al., 1999 EMBO J. 18:363-374; Wise et al., 1999 Proc. Natl. Acad. Sci USA 96:3071-3076). Alignment of all mammalian VEGF sequences indicated that VEGF-E is distinct from the previously described VEGFs but most closely related to VEGF-A. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation, whilst in contrast to VEGF-A, VEGF-E and hb-VEGF-E can not bind to VEGF receptor-1 (Flt-1). Therefore VEGF-E is a potent angiogenic factor selectively binding to VEGF receptor–2/ KDR. Compared to human VEGF165 this virus form has no heparin-binding domain and seems to be a freely secreted protein comparable to VEGF121. In order to compare this form with human VEGF165, an additional heparin-binding domain was engineered at the C-terminus to allow interaction with proteo-aminoglycans and heparan sulfate. These form is also able to interact with neuropillin–1.
Description: A DNA sequence encoding the mature variant of ovVEGF-E isolate D1701 (Dehio et al., 1999; GenBank accession No. AF106020) was expressed in E. coli as a 132 amino acid residue fusion protein with an N-terminal His-tag sequence and a thrombin cleavage site. Recombinant VEGF-E homodimer was dimerized in vitro and has a predicted mass of approximately 35 kDa.
Description: A DNA sequence encoding the mature variant of ov-VEGF-E isolate D1701 was expressed in E. coli as a 132 amino acid residue fusion protein with an N-terminal His-tag sequence and a thrombin cleavage site. Recombinant VEGF-E homodimer was dimerized in vitro and has a predicted mass of approximately 35 kDa. Based on sequence similarity to VEGF-A, a gene encoding a VEGF homologue has recently been discovered in the genome of Orf virus (OV). Different isolates of Orf virus show significant amino acid sequence similarity to VEGF-A and described as a viral virulence factor that appears to be derived from captured host genes. All eight Cysteine residues of the central Cysteine knot motif characteristic of members of the VEGF family are conserved among other residues in the VEGF-E proteins. Alignment of all mammalian VEGF sequences indicated that VEGF-E is distinct from the previously described VEGFs but most closely related to VEGF-A. Like VEGF-A, VEGF-E was found to bind with high affinity to VEGF receptor-2 (KDR) resulting in receptor autophosphorylation, whilst in contrast to VEGF-A, VEGF-E cannot bind to VEGF receptor-1 (Flt-1). Furthermore VEGF-E can also not bind to VEGF receptor-3 (FLT-4). Therefore VEGF-E is a potent angiogenic factor selectively binding to VEGF receptor –2/KDR.